Solving Systems by Graphing and Substitution

The system has one solution, $(4,2)$.

$$
\begin{gathered}
y=\underbrace{x+1}_{\substack{x+1}} 2 y=3 x \\
2 y=3 x \\
2(x+1)=3 x \\
2 x+2=3 x \\
\frac{-2 x}{2 x}-2 x \\
y=x \\
y=x+1 \\
y=2+1=3
\end{gathered}
$$

Solution: $(1,3)$

Solving Systems of Linear Equations by Graphing

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=2 x-4 \\
y=-\frac{1}{3} x+3
\end{array}\right. \\
& \text { Solution }:(3,2) \\
& 2=2(3)-4 \quad 2=-\frac{1}{3}(3)+3 \\
& 2=2
\end{aligned}
$$

Graphing to Solve a Linear System

Let's summarize! There are 4 steps to solving a linear system using a graph.
: Put both equations in slope - intercept form.

Step 2: Graph both equations on the same coordinate plane.

Step 3: Estimate where the graphs intersect.

Step 4: Check to make sure your solution makes both equations true.

Solve both equations for y, so that each equation looks like

$$
y=m x+b
$$

Use the slope and y-intercept for each equation in step 1. Be sure to use a ruler and graph paper!

This is the solution! LABEL the solution!

Substitute the x and y values into both equations to verify the point is a solution to both equations.

Solving Systems of Linear Equations by Graphing

$$
\begin{aligned}
& \left\{\begin{array}{c}
y=3 \\
y=-4 x-1
\end{array}\right. \\
& \text { Solution: }(-1,3) \\
& 3=3 \quad 3=-4(-1)-1 \\
& 3=3
\end{aligned}
$$

Solving Systems of Linear Equations by Graphing

$$
\begin{gathered}
\left\{\begin{array} { c }
{ x - y = 3 } \\
{ 2 x + y = 0 }
\end{array} \quad \left\{\begin{array}{l}
y=x-3 \\
y=-2 x
\end{array}\right.\right. \\
\text { Solution: }(1,-2) \\
1-(-2)=3
\end{gathered} \begin{aligned}
& 2(1)+(-2)=0 \\
& 3=3
\end{aligned}
$$

CLASSIFICATION OF LINEAR SYSTEMS (p.278)

Classification	Consistent and Independent	Consistent and Dependent	Inconsistent
Number of Solutions	Exactly One	Infinitely Many	None
Description	Different Slopes	Same Slope, Same y-intercept	Same Slope, Different y-intercept

$$
\begin{aligned}
& Y=3 x+4 \\
& Y=-3 x+2
\end{aligned}
$$

$Y=1 / 2 x+10 \quad$ Different slopes
$Y=1 / 3 x+10$

$$
\begin{aligned}
& Y=4 x+5 \\
& Y=4 x+5
\end{aligned}
$$

Same slope, Same y-intercept

$$
\begin{aligned}
& Y=-3 x+1 \\
& Y=-3 x-1
\end{aligned}
$$

Same slope, Different y-intercepts

CONSISTENT and INDEPENDENT so there is 1 solution to the system

CONSISTENT and DEPENDENT

So there are infinite solutions
$2 y=10 x+14$ Not slope-intercept form
$y=5 x+7$

Change the $1^{\text {st }}$ equation to $Y=5 x+7$, then Same Slope, Same y-intercept

CONSISTENT and DEPENDENT
So there are infinite solutions

INCONSISTENT

So there is no solution

Example 1

$$
\begin{array}{lll}
x+5 y=9 & \text { (1) } & \text { To solve, rewrite } \\
\text { each equation in the }
\end{array}
$$

Isolating y in line (1)

$$
x+5 y=9
$$

$5 y=-x+9$
$y=\frac{-x+9}{5}$
$y=-\frac{1}{5} x+\frac{9}{5}$

Isolating y in line (2)

$$
3 x-2 y=12
$$

$$
-2 y=-3 x+12
$$

$$
\begin{array}{r}
y=\frac{-3 x+12}{-2} \\
y=\frac{3}{2} x-6
\end{array}
$$

What type of system is it?

$$
y=-\frac{1}{5} x+\frac{9}{5}
$$

What is the slope and y-intercept for line (1)?

$$
\begin{array}{ll}
m=-\frac{1}{5} & m=\frac{3}{2} \\
b=\frac{9}{5} & b=-6
\end{array}
$$

$$
y=\frac{3}{2} x-6
$$

What is the slope and y-intercept for line (2)?

Since the lines have different slopes they will intersect. The system will have one solution and is classified as being consistent-independent.

Objective

The student will be able to:

solve systems of equations using substitution.

A-REI.3.6

Solving Systems of Equations

- You can solve a system of equations using different methods. The idea is to determine which method is easiest for that particular problem.
- These notes show how to solve the system algebraically using SUBSTITUTION.

Solving a system of equations by substitution

Pick the easier equation. The goal is to get $y=; x=; a=$; etc.

Put the equation solved in Step 1 into the other equation.

Get the variable by itself.

Substitute the value of the variable into the equation.

Substitute your ordered pair into BOTH equations.

1) Solve the system using substitution

$$
\begin{aligned}
& x+y=5 \\
& y=3+x
\end{aligned}
$$

Step 1: Solve an equation for one variable.

Step 2: Substitute

The second equation is already solved for y !

$$
\begin{gathered}
x+y=5 \\
x+(3+x)=5
\end{gathered}
$$

$$
2 x+3=5
$$

$$
2 x=2
$$

$$
x=1
$$

1) Solve the system using substitution

$$
\begin{aligned}
& x+y=5 \\
& y=3+x
\end{aligned}
$$

Step 4: Plug back in to find the other variable.

Step 5: Check your solution.

$$
x+y=5
$$

$$
(1)+y=5
$$

$$
y=4
$$

$(1,4)$
$(1)+(4)=5$
$(4)=3+(1)$
The solution is $(1,4)$. What do you think the answer would be if you graphed the two equations?

Which answer checks correctly?

$$
\begin{gathered}
3 x-y=4 \\
x=4 y-17
\end{gathered}
$$

1. $(2,2)$
2. $(5,3)$
3. $(3,5)$
4. $(3,-5)$

2) Solve the system using substitution

$$
\begin{gathered}
3 y+x=7 \\
4 x-2 y=0
\end{gathered}
$$

It is easiest to solve the first equation for x.

Step 1: Solve an equation for one variable.

Step 2: Substitute

$$
\begin{gathered}
3 y+x=7 \\
-3 y \quad-3 y \\
x=-3 y+7 \\
4 x-2 y=0 \\
4(-3 y+7)-2 y=0
\end{gathered}
$$

2) Solve the system using substitution

$$
\begin{gathered}
3 y+x=7 \\
4 x-2 y=0
\end{gathered}
$$

Step 3: Solve the equation.

Step 4: Plug back in to find the other variable.
$-12 y+28-2 y=0$
$-14 y+28=0$
$-14 y=-28$
$y=2$

$$
4 x-2 y=0
$$

$$
4 x-2(2)=0
$$

$$
4 x-4=0
$$

$$
4 x=4
$$

$$
x=1
$$

2) Solve the system using substitution

$$
\begin{gathered}
3 y+x=7 \\
4 x-2 y=0
\end{gathered}
$$

Step 5: Check your solution.

$$
\begin{gathered}
(1,2) \\
3(2)+(1)=7 \\
4(1)-2(2)=0
\end{gathered}
$$

When is solving systems by substitution easier to do than graphing?
When only one of the equations has a variable already isolated (like in example \#1).

If you solved the first equation for x, what would be substituted into the bottom equation.

$$
\begin{aligned}
& 2 x+4 y=4 \\
& 3 x+2 y=22
\end{aligned}
$$

1. $-4 y+4$
2. $-2 y+2$
3. $-2 x+4$
4. $-2 y+22$

3) Solve the system using substitution

$$
\begin{aligned}
& x=3-y \\
& x+y=7
\end{aligned}
$$

The first equation is already solved for x !

$$
\begin{gathered}
x+y=7 \\
(3-y)+y=7 \\
3=7
\end{gathered}
$$

The variables were eliminated!!
This is a special case.
Does 3 = 7? FALSE!
When the result is FALSE, the answer is NO SOLUTIONS.

3) Solve the system using substitution

$$
\begin{gathered}
2 x+y=4 \\
4 x+2 y=8
\end{gathered}
$$

Step 1: Solve an equation for one variable.

Step 2: Substitute

Step 3: Solve the equation.

The first equation is easiest to solved for y !

$$
\begin{gathered}
y=-2 x+4 \\
4 x+2 y=8 \\
4 x+2(-2 x+4)=8 \\
4 x-4 x+8=8 \\
8=8
\end{gathered}
$$

This is also a special case.
Does $8=8$? TRUE!

When the result is TRUE, the answer is INFINITELY MANY SOLUTIONS.

